MLPerf Tiny Benchmark

Accepted @ NeurIPS 2021: Benchmarks and Datasets Track

Paper

Benchmark Github

Abstract:

Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted and easily reproducible benchmark for these systems. To meet this need, we present MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power tiny machine learning systems. The benchmark suite is the collaborative effort of more than 50 organizations from industry and academia and reflects the needs of the community. MLPerf Tiny measures the accuracy, latency, and energy of machine learning inference to properly evaluate the tradeoffs between systems. Additionally, MLPerf Tiny implements a modular design that enables benchmark submitters to show the benefits of their product, regardless of where it falls on the ML deployment stack, in a fair and reproducible manner. The suite features four benchmarks: keyword spotting, visual wake words, image classification, and anomaly detection.

MicroNets:
Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers

Published @ MLSys 2021

Talk

Abstract:

Executing machine learning workloads locally on resource constrained microcontrollers (MCUs) promises to drastically expand the application space of IoT. However, so-called TinyML presents severe technical challenges, as deep neural network inference demands a large compute and memory budget. To address this challenge, neural architecture search (NAS) promises to help design accurate ML models that meet the tight MCU memory, latency and energy constraints. A key component of NAS algorithms is their latency/energy model, i.e., the mapping from a given neural network architecture to its inference latency/energy on an MCU. In this paper, we observe an intriguing property of NAS search spaces for MCU model design: on average, model latency varies linearly with model operation (op) count under a uniform prior over models in the search space. Exploiting this insight, we employ differentiable NAS (DNAS) to search for models with low memory usage and low op count, where op count is treated as a viable proxy to latency. Experimental results validate our methodology, yielding our MicroNet models, which we deploy on MCUs using Tensorflow Lite Micro, a standard open-source NN inference runtime widely used in the TinyML community. MicroNets demonstrate state-of-the-art results for all three TinyMLperf industry-standard benchmark tasks: visual wake words, audio keyword spotting, and anomaly detection. Models and training scripts can be found here.

Benchmarking TinyML Systems:
Challenges and directions

arXiv

Abstract:

Recent advancements in ultra-low-power machine learning (TinyML) hardware promises to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted benchmark for these systems. Benchmarking allows us to measure and thereby systematically compare, evaluate, and improve the performance of systems and is therefore fundamental to a field reaching maturity. In this position paper, we present the current landscape of TinyML and discuss the challenges and direction towards developing a fair and useful hardware benchmark for TinyML workloads. Furthermore, we present our four benchmarks and discuss our selection methodology. Our viewpoints reflect the collective thoughts of the TinyMLPerf working group that is comprised of over 30 organizations.