MLPerf Tiny Benchmark

Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Honson Tran, Nhan Tran, Niu Wenxu, Xu Xuesong

Published @ NeurIPS 2021: Benchmarks and Datasets Track

Benchmark Github

Abstract:

Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted and easily reproducible benchmark for these systems. To meet this need, we present MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power tiny machine learning systems. The benchmark suite is the collaborative effort of more than 50 organizations from industry and academia and reflects the needs of the community. MLPerf Tiny measures the accuracy, latency, and energy of machine learning inference to properly evaluate the tradeoffs between systems. Additionally, MLPerf Tiny implements a modular design that enables benchmark submitters to show the benefits of their product, regardless of where it falls on the ML deployment stack, in a fair and reproducible manner. The suite features four benchmarks: keyword spotting, visual wake words, image classification, and anomaly detection.

Multilingual Spoken Words Corpus

Mark Mazumder, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan Manuel Ciro, Keith Achorn, Daniel Galvez, Mark Sabini, Peter Mattson, David Kanter, Greg Diamos, Pete Warden, Josh Meyer, Vijay Janapa Reddi

Published @ NeurIPS 2021: Benchmarks and Datasets Track

Dataset link

Abstract:

Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted and easily reproducible benchmark for these systems. To meet this need, we present MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power tiny machine learning systems. The benchmark suite is the collaborative effort of more than 50 organizations from industry and academia and reflects the needs of the community. MLPerf Tiny measures the accuracy, latency, and energy of machine learning inference to properly evaluate the tradeoffs between systems. Additionally, MLPerf Tiny implements a modular design that enables benchmark submitters to show the benefits of their product, regardless of where it falls on the ML deployment stack, in a fair and reproducible manner. The suite features four benchmarks: keyword spotting, visual wake words, image classification, and anomaly detection.

Few-Shot Keyword Spotting in Any Language

Mark Mazumder, Colby Banbury, Josh Meyer, Pete Warden, Vijay Janapa Reddi

Published @ Interspeech 2021

Abstract:

We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F1 score of 0.75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages. This embedding model also generalizes to new languages. We achieve an average F1 score of 0.65 on 5-shot models for 260 keywords sampled across 13 new languages unseen by the embedding model. We investigate streaming accuracy for our 5-shot models in two contexts: keyword spotting and keyword search. Across 440 keywords in 22 languages, we achieve an average streaming keyword spotting accuracy of 87.4% with a false acceptance rate of 4.3%, and observe promising initial results on keyword search.

MicroNets:
Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers

Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro, Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, Paul N. Whatmough

Published @ MLSys 2021

Talk

Abstract:

Executing machine learning workloads locally on resource constrained microcontrollers (MCUs) promises to drastically expand the application space of IoT. However, so-called TinyML presents severe technical challenges, as deep neural network inference demands a large compute and memory budget. To address this challenge, neural architecture search (NAS) promises to help design accurate ML models that meet the tight MCU memory, latency and energy constraints. A key component of NAS algorithms is their latency/energy model, i.e., the mapping from a given neural network architecture to its inference latency/energy on an MCU. In this paper, we observe an intriguing property of NAS search spaces for MCU model design: on average, model latency varies linearly with model operation (op) count under a uniform prior over models in the search space. Exploiting this insight, we employ differentiable NAS (DNAS) to search for models with low memory usage and low op count, where op count is treated as a viable proxy to latency. Experimental results validate our methodology, yielding our MicroNet models, which we deploy on MCUs using Tensorflow Lite Micro, a standard open-source NN inference runtime widely used in the TinyML community. MicroNets demonstrate state-of-the-art results for all three TinyMLperf industry-standard benchmark tasks: visual wake words, audio keyword spotting, and anomaly detection. Models and training scripts can be found here.

Benchmarking TinyML Systems:
Challenges and directions

Colby Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov, David Patterson, Danilo Pau, Jae-sun Seo, Jeff Sieracki, Urmish Thakker, Marian Verhelst, Poonam Yadav

arXiv

Abstract:

Recent advancements in ultra-low-power machine learning (TinyML) hardware promises to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted benchmark for these systems. Benchmarking allows us to measure and thereby systematically compare, evaluate, and improve the performance of systems and is therefore fundamental to a field reaching maturity. In this position paper, we present the current landscape of TinyML and discuss the challenges and direction towards developing a fair and useful hardware benchmark for TinyML workloads. Furthermore, we present our four benchmarks and discuss our selection methodology. Our viewpoints reflect the collective thoughts of the TinyMLPerf working group that is comprised of over 30 organizations.